Model compression

At the end of each journey in our process of understanding, we have an effective solution to the problem we were presented with. Here’s an interesting thing I am noticing. We still have a diverse, deeply nuanced mental model of the problem that we developed by cycling through the solution loop. However, we don’t actually need the full diversity of the model at this point. We found the one solution that we actually need when approaching the given problem.

This is a pivotal point at which our solution becomes shareable. To help others solve similar problems, we don’t need to bestow the full burden of our trials and errors upon them. We can just share that one effective solution. In doing so, we compress the model, providing only a shallow representation of it that covers just enough to describe the solution.

This trick of model compression seems simple, but it ends up being nothing short of astounding. Let’s start with an example of simple advice, like that time when an expert showed me how to properly crack an egg and I almost literally felt the light bulb go off in my head. It would have taken me a lot of cycling through the solution loop to get anywhere close to that technique. Thanks to the compressed model transfer, I was able to bypass all of that trial and error.

Next, I invite you to direct your attention to the wonder of a modern toothbrush. Immeasurable amounts of separate solution loop iterations went into finding the right shape and materials to offer this compressed model of dental hygiene. To keep my teeth healthy, I don’t have to know any of that. I only need to have a highly compressed model: how to work the toothbrush. This ability to compound is what makes model compression so phenomenally important.

We live in a technological world. We are surrounded by highly compressed mental models that are themselves composed of other highly compressed models, recursing on and on. I am typing this little article on a computer, and if I stop to imagine an uncompressed mental model of this one device, from raw materials scattered unfound across the planet to the cursor blinking back at me, my mind boggles in awe. To type, I don’t have to know any of that. Despite us taking it for granted, our capacity to compress and share models might just be the single most important gift that humanity was given – aside from being able to construct these models, of course.

Model compression introduces a peculiar extra stage to the process of understanding. At this fifth stage, our solution effectiveness is high, flux is low, but our model diversity is low as well. When we acquire a compressed model – whether through technology or a story – we don’t inherit the rich diversity of the model. We don’t get the full experiential process of constructing it. We just get the most effective solution.

It feels like a reasonable deal, yet there is a catch. As we’ve learned earlier, things change

When my solution is at this newly discovered “compressed” stage, a new change will expose this stage’s brittleness: I don’t have the diversity of the model necessary to continue climbing the stair steps of understanding. Instead, it appears that I need to start problem-solving from scratch. This does make intuitive sense, and the compressed model compounding makes this even more apparent. When a modern phone suddenly stops working, we have only a couple of different things we can try to resuscitate: plug in the charger and/or maybe try to hold down the power button and hope it comes back. If it doesn’t, the vastness of crystallized model compression makes it as good as a pebble. Chuck it into a drawer or into a lake – not much else can happen here.

Lucky for us, this phenomenon of compressed models being brittle in the face of change is a problem in itself – which means that we can aim our solving ability at it. If we’re really honest about it, software engineering is not really about writing software. It’s about writing software that breaks less often and when it does, it does so in graceful ways. So we’ve come with a neat escape route out of this particular predicament. If my toothbrush breaks or wears out, I just replace it with a new one from the five-pack in which they usually come. If my laptop stops working, I take it to a “genius” to have it fixed. Warranties, redundancies, and repair facilities – all of these solutions rely on the presence of someone else possessing  – and maintaining! – their diversity of the mental model for me to lean on.

This shortcut works great in so many cases that I probably need to draw a special arrow on our newly updated diagram of the process of understanding. There are two distinct cycles that emerge: the already-established cycle of learning, and the applying cycle, where I can only use compressed models obtained through learning – even if I didn’t do the learning myself! Both are available to us, but the applying cycle feels much more (like orders of magnitude) economical to our force of homeostasis. As a result, we constantly experience the gravitational pull toward this cycle.

One thought on “Model compression”

Leave a Reply

%d bloggers like this: