A problem

To get a more solid grounding of the newly born decision-making framework, we need to understand what a problem is. Let’s begin with a definition. A problem is an imposition of our intention on a phenomenon.

I touched on this notion of intention a bit in one of the Jank in Teams pieces, but here’s a recap. Our mental models generate a massive array of  predictions, and it appears that we prefer some of these predictions to others. The union of these predictions manifests as our intention. When we observe any phenomenon, we can’t help it but impose our intention on it. The less the predicted future state of the phenomenon aligns with our intention, the more of a problem it is.

For example, suppose I am growing a small garden in my backyard. I love plants and they are amazing, but if they aren’t the ones that I intended to grow on my plot, they are a problem. Similarly, If I am shown a video of a cute bunny eating a carrot, I would not see the events, documented by the videographer as a problem. Unless, that is, I am told that this video was just recorded in my garden. At this very instant, the fluffy animal becomes a harvest-destroying pest – and a problem.

I like this definition because it places problems in the realm of subjectivity. To become problems, phenomena need to be subject to a particular perspective. A phenomenon is a problem only if we believe it is a problem. Even world-scale, cataclysmic events like climate change are only a problem if our preferred future includes a thriving humanity and life as we know it. I also like how it incorporates intention and thus, a desire to impose our will on a phenomenon. When we decide that something is problematic, we reveal our preferences to its future state.

Framing problems as a byproduct of intentionality also allows us to play with the properties of intention to see how they shift the nature of a problem. Looking at the discussion of the definition above, I can name a couple of such properties: the strength of intention and the degree of alignment. Let’s draw – you know it! – a 2×2, a tool to represent the continuous spectrum of these property values as their extremities. The vertical axis will be the degree of alignment between the current state of the phenomenon and our intention imposed on it. The horizontal axis will represent the strength of our intention.

In the top-left quadrant, we’re facing a disaster. A combination of strong intention and a poor alignment means that we view the phenomenon as something pretty terrible and looming large. The presence of a strong intention tends to have this quality. The more important it is for a phenomenon to be in a certain state, the more urgent and pressing the problem will feel for us. Another way to think of strength of intention is how existential for us is the fulfillment of this intention. If I need my garden to survive through the winter, it being overrun by a horde of ravenous bunnies will definitely fit into this quadrant.

Moving clockwise, the alignment is still poor, but our intention is not that strong. This quadrant is a mess. This is where we definitely see that things could be better, but we keep not finding time on our schedule to deal with the situation. Problems in this quadrant can still feel large in scope, indicating that the predicted future state of the phenomenon is far apart from the state we intend it to have. It’s just that we don’t experience the same existential dread when we survey them. Using that same garden as an example, I might not like how I planted the carrots in meandering, halting curves, but that would be a mess rather than a disaster.

The bottom-right quadrant is full of quirks. The degree of intention misalignment is small, and the intention is weak. Quirks aren’t necessarily problems. They can even be a source of delightful reflection, like that one carrot that seems to stick out of the row, seemingly trying to escape its kin.

The final quadrant is the bread and butter of software engineers. The phenomenon’s state is nearly aligned with our intention, but the strength of our intention makes even a tiny misalignment a problem. This is the bug quadrant. Fixing bugs is a methodical process of addressing relatively small, but important problems within our code. After all, if the bug is large enough, it is no longer a bug, but a problem from the quadrant above – a disaster.

One thought on “A problem”

Leave a Reply

Discover more from Dimitri Glazkov

Subscribe now to keep reading and get access to the full archive.

Continue reading